РЕКОМЕНДУЕМАЯ ФОРМА для разработчиков основных профессиональных образовательных программ при реализации ОС МГУ на основе ФГОС 3+

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный университет имени М.В. Ломоносова Механико-математический факультет Кафедра газовой и волновой динамики

УТВЕРЖДАЮ Заведующий кафедрой эаведующии кафедрой /Нигматулин Р.И./ «_10_» _июня__2019_г. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Наименование дисциплины (модуля): Пластичность и разрушение твердых тел наименование дисциплины (модуля) Уровень высшего образования: специалитет Направление подготовки (специальность): 01.05.01 Фундаментальные математика и механика (код и название направления/специальности) Направленность (профиль) ОПОП: В-ЕН Фундаментальная механика (если дисциплина (модуль) относится к вариативной части программы) Форма обучения: очная очная, очно-заочная

Рабочая программа рассмотрена и одобрена на заседании кафедры газовой и волновой динамики (протокол №__15____, «_10_» ___июня___ 20_19_ года)

На обратной стороне титула:

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки/ специальности «Фундаментальные математика и механика» (программы бакалавриата, магистратуры, реализуемых последовательно по схеме интегрированной подготовки; программы специалитета; программы магистратуры) в редакции приказа МГУ от 30 декабря 2016 г.

Гол (гол	цы) приема на об	бучение 2014	
1 04 (104	in in the contraction of	, icinic 201 i	

- **1.** Место дисциплины (модуля) в структуре ОПОП ВО (*относится к базовой или вариативной части ОПОП ВО*, *или является факультативом*). Вариативная часть ООП. Является специальной дисциплиной (ЕНС) для студентов 3-6 годов обучения, специализирующихся в данной научной области или смежной научной области, ЕНС по выбору студента. Освоение дисциплины необходимо для сдачи экзаменов по основной и смежной специальностям, сдачи выпускных экзаменов, написания курсовых и дипломных работ, статей и научных отчетов.
- **2.** Входные требования для освоения дисциплины (модуля), предварительные условия (если есть): освоение дисциплин «Основы механики сплошных сред», «Математический анализ», «Линейная алгебра», «Механика сплошной среды», «Дифференциальные уравнения».
- 3. Результаты обучения по дисциплине (модулю), соотнесенные с требуемыми компетенциями выпускников.

Компетенции выпускников (коды)	Планируемые результаты обучения по дисциплине (модулю),		
	соотнесенные с компетенциями		
УК-1	<i>Уметь</i> проводить самостоятельно научные и прикладные		
УК-6	исследования в специальных областях механики		
ОПК-1	Уметь использовать фундаментальные знания в области		
СПК-1	специализации в будущей профессиональной деятельности		
СПК-2	<i>Владеть</i> специальными разделами механики сплошной среды, физико-		
СПК-3	химической газовой динамики, теории детонации и горения, методами		
ОПК-3	анализа и решения задач специализации		
	<i>Знать</i> специальные разделы механики жидкости, газа и плазмы,		
	физико-химической газовой динамики, теории детонации и горения.		
ПК-2	<i>Уметь</i> применять методы анализа для решения задач специализации		

- 4. Формат обучения: очная форма обучения, лекционные занятия.
- **5.** Объем дисциплины (модуля) составляет 2 з.е., в том числе 28 академических часов, отведенных на контактную работу обучающихся с преподавателем, 44 академических часов на самостоятельную работу обучающихся.
- 6. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий

Наименование и краткое содержание	Всего	В том числе	
разделов и тем дисциплины (модуля),	(часы)	Контактная работа	Самостоятельная
		(работа во взаимодействии с преподавателем)	работа

Форма промежуточной аттестации по дисциплине (модулю)		Виды контактной работы, часы			обучающегося, часы (виды самостоятельной работы — эссе, реферат, контрольная работа и пр. — указываются при необходимости)
		Занят ия лекци онног о типа*	Занят ия семин арско го го	Всего	
1. Твердое и жидкое состояние материи. Упругие, вязкие и пластические вещества. Коэффициент вязкости.	2	1		1	1
2. Диаграммы упругого, вязкого и идеально пластического вещества. Поведение материалов при больших давлениях. Относительность понятий жидкое и твердое.	2	1		1	1
3. Упругие и остаточные деформации. Условная кривая напряжений — деформаций. Предел текучести.		1		1	1
4. Предел пропорциональности. Упрочнение. Гистерезис. Эффекты Баушингера.	2	1		1	1
5. Зависимость предела текучести от скорости деформаций. Формула Людвига. Ползучесть. Три этапа процесса ползучести. Релаксация. Последействие. Восстановление		2		2	2

	,			1
6. Условная и натуральная кривые напряжений — деформаций. Принцип построения натуральной кривой напряжения — деформации. Условная и натуральная деформации.	4	2	2	2
7. Условие несжимаемости материала в терминах натуральной деформации. Натуральная скорость деформации. Работа при пластическом растяжении.	4	2	2	2
8. Моделирование вязкоупругопластического поведения материалов. Тело Максвелла, Бингама и Фойхта. Наследственная теория упругости.	3	1	1	2
9. Промежуточная аттестация. Коллоквиум	4			4
10. Введение в теорию дислокаций. Дислокационные линии. Дислокации. Сила, действующая на дислокацию.	4	2	2	2
11. Зависимость пластической деформации от скорости движения дислокации.	4	2	2	2
12. Вектор Бюргерса. Различные определения вектора Бюргерса. Консервативные и неконсервативные движения. Винтовые и краевые дислокации.	4	2	2	2
13. Напряжения. Графическое представление напряжений по способу Мора. Главные	4	2	2	2

касательные напряжения. Октаэдрическиенапряжения. Теории прочности и пластичности.				
14. Критерии разрушения. Поверхность текучести. Теория Мора. Огибающая кругов Мора. Критерий разрушения Мора- Кулона.	3	1	1	2
15. Неравенство Друккера. Ассоциированный закон пластичности.	4	2	2	2
16. Определяющие соотношения в регулярной и конической точке поверхности нагружения.	3	1	1	2
17. Решение задач теории идеальной пластичности на основе теории течения и деформационной теории.	4	2	2	2
18. Решение смешанных задач.	4	2	2	2
Итоговая аттестация: экзамен (указывается форма проведения)	6			6
Итого	72	28	28	44

^{*}Внимание! В таблице должно быть зафиксировано проведение текущего контроля успеваемости, который может быть реализован, например, в рамках занятий семинарского типа.

^{**} Часы, отводимые на проведение промежуточной аттестации, выделяются из часов самостоятельной работы обучающегося

- 7. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю)
- 7.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости. Вопросы к коллоквиуму
 - 1. Твердое и жидкое состояние материи. Упругие, вязкие и пластические вещества. Коэффициент вязкости.
 - 2. Диаграммы упругого, вязкого и идеально пластического вещества. Поведение материалов при больших давлениях. Относительность понятий жидкое и твердое.
 - 3. Упругие и остаточные деформации. Условная кривая напряжений деформаций. Предел текучести.
 - 4. Предел пропорциональности. Упрочнение. Гистерезис. Эффекты Баушингера.
 - 5. Зависимость предела текучести от скорости деформаций. Формула Людвига. Ползучесть. Три этапа процесса ползучести. Релаксация. Последействие. Восстановление
 - 6. Условная и натуральная кривые напряжений деформаций. Принцип построения натуральной кривой напряжения деформации. Условная и натуральная деформации.
 - 7. Условие несжимаемости материала в терминах натуральной деформации. Натуральная скорость деформации. Работа при пластическом растяжении.
 - 8. Моделирование вязкоупругопластического поведения материалов. Тело Максвелла, Бингама и Фойхта. Наследственная теория упругости.
- 7.2. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации. Вопросы к экзамену
 - 1. Твердое и жидкое состояние материи. Упругие, вязкие и пластические вещества. Коэффициент вязкости.
 - 2. Диаграммы упругого, вязкого и идеально пластического вещества. Поведение материалов при больших давлениях. Относительность понятий жидкое и твердое.

- 3. Упругие и остаточные деформации. Условная кривая напряжений деформаций. Предел текучести.
- 4. Предел пропорциональности. Упрочнение. Гистерезис. Эффекты Баушингера.
- 5. Зависимость предела текучести от скорости деформаций. Формула Людвига. Ползучесть. Три этапа процесса ползучести. Релаксация. Последействие. Восстановление
- 6. Условная и натуральная кривые напряжений деформаций. Принцип построения натуральной кривой напряжения деформации. Условная и натуральная деформации.
- 7. Условие несжимаемости материала в терминах натуральной деформации. Натуральная скорость деформации. Работа при пластическом растяжении.
- 8. Моделирование вязкоупругопластического поведения материалов. Тело Максвелла, Бингама и Фойхта. Наследственная теория упругости.
- 9. Введение в теорию дислокаций. Дислокационные линии. Дислокации. Сила, действующая на дислокацию.
- 10. Зависимость пластической деформации от скорости движения дислокации.
- 11. Вектор Бюргерса. Различные определения вектора Бюргерса. Консервативные и неконсервативные движения. Винтовые и краевые дислокации.
- 12. Напряжения. Графическое представление напряжений по способу Мора. Главные касательные напряжения. Октаэдрическиенапряжения. Теории прочности и пластичности.
- 13. Критерии разрушения. Поверхность текучести. Теория Мора. Огибающая кругов Мора. Критерий разрушения Мора-Кулона.
- 14. Неравенство Друккера. Ассоциированный закон пластичности.
- 15. Определяющие соотношения в регулярной и конической точке поверхности нагружения.
- 16. Решение задач теории идеальной пластичности на основе теории течения и деформационной теории.
- 17. Решение смешанных задач.

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине (модулю)						
Оценка РО и соответствующие виды оценочных средств	2	3	4	5		
Знания (виды оценочных средств: устные и письменные опросы и контрольные работы, тесты, и т.п.)	Отсутствие знаний	Фрагментарные знания	Общие, но не структурированные знания	Сформированные систематические знания		
Умения (виды оценочных средств: практические контрольные задания, написание и защита рефератов на заданную тему и т.п.)	Отсутствие умений	В целом успешное, но не систематическое умение	В целом успешное, но содержащее отдельные пробелы умение (допускает неточности непринципиального характера)	Успешное и систематическое умение		
Навыки (владения, опыт деятельности) (виды оценочных средств: выполнение и защита курсовой работы, отчет по практике, отчет по НИР и т.п.)	Отсутствие навыков (владений, опыта)	Наличие отдельных навыков (наличие фрагментарного опыта)	В целом, сформированные навыки (владения), но используемые не в активной форме	Сформированные навыки (владения), применяемые при решении задач		

8. Ресурсное обеспечение:

Перечень основной и дополнительной литературы:

:

- 1. Седов. Л.И. Механика сплошной среды Учеб. для вузов. 6-е изд., стер. СПб. Издательство «Лань», 2004. 560 с.
- 2. Л.М. Качанов. Основы теории пластичности. Москва. Наука. 1969
- 3. А. Котрелл. Теория дислокаций. Москва. Мир. 1969
- 4. Ю.Н. Работнов. Элементы наследственной механики твёрдых тел. Москва. Наука. 1977

5. А.Н. Надаи. Пластичность и разрушение твердых тел. Москва. ИИЛ. 1954

9. Язык преподавания.

русский

10. Преподаватель (преподаватели). Юмашев М.В.

11. Автор (авторы) программы.

Юмашев М.В.